In this paper,we prove that a Noetherian domain R is a UMV-domain if and only if every prime v-ideal of R has height one and U-1≠R[X] for each U∈UTZ(R).
证明了若R是Noether整环,则R是UMV整环当且仅当对任意的U∈UTZ(R),有U-1≠R[X],且R中的每个素v-理想高度为1。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2025 优校网[www.youxiaow.com]版权所有 All Rights Reserved. 浙ICP备2024058711号